
CGI2012 manuscript No.
(will be inserted by the editor)

Real-time Synthetic Vision Visibility Testing on Arbitrary
Surfaces

Abstract One of the key features of 2D real-time strat-

egy (RTS) games like StarCraft II or serious games for

training is visibility testing for each unit. Visibility test-

ing provides functionality like fog of war, non-player

character (NPC) activation, and realistic artificial in-

telligence. With the advent of path planning and crowd

simulation algorithms on arbitrary surfaces, the tech-

nology is almost available for RTS games to move from

the 2D plane to complex surfaces like multi-story build-

ings, subways, asteroids, space ships, or surfaces where

insects swarm, such as a hive or colony. We propose

a novel synthetic vision approach to visibility testing

that allows features like fog of war for RTS games on

arbitrary surfaces. Unlike previous synthetic vision al-

gorithms, our algorithm is specifically designed for non-

planar surfaces and surfaces that have not been labeled

manually, in addition to meeting the real-time demands
of RTS games. Our resulting algorithm does visibility

testing for up to 100 or more units in real-time on com-

plex surfaces and allows RTS and serious games to use

non-planar surfaces in a manner that has not been pos-

sible before.

Keywords visibility testing, synthetic vision, fog of

war, 3D crowd simulation

1 Introduction

One of the key elements that computers brought to the

gaming world is visibility testing. Unlike board games,

which often give both players perfect information about

the position of all characters, computer games can limit

the visibility of each player, leading to a captivating

gaming experience.

Visibility testing is most commonly recognized in a

game’s fog of war. In a real-time strategy game (RTS) or

similar serious game, the player can only see the terrain

and enemy characters that are within the line of sight

of player-controlled agents. Visibility testing and fog of

war create games that mimic the true uncertainty and

confusion of search and rescue missions and warfare.

This realism leads to a variety of intriguing strategies

since players must use resources and agents to disperse

the fog of war and may use the fog of war to their

advantage against their opponent. Without the fog of

war, RTS games would lose their attraction and serious

games would lose their ability to model the confusion

and uncertainty of the training experience.

The importance of visibility testing has lead to its

ubiquity in RTS and serious games. However, most of
these games focus on essentially flat, 2D environments

since this makes it easy to do path planning, obsta-

cle avoidance, and similar computations in real-time.

Unfortunately, restricting RTS and serious games to a

plane or a plane plus height map means the virtual

environments of these games cannot reflect many of

the complex surfaces we walk on every day. For ex-

ample, a planar environment cannot capture the com-

plexity of architectural structures like multi-story build-

ings, parking garages, subway stations, and houses; en-

vironmental features like intertwining caves, overhangs,

and arches; outer-space environments like asteroids and

space stations; nor the various surfaces where insects

swarm like their colonies or on the inside of houses.

Moving from the 2D plane to fully-3D environments

totally revolutionized the first-person shooter experi-

ence. Going from the repetitive, flat levels of Wolfen-

stein 3D to the complexity and realism of Doom and

its successors spawned one of the most successful video

games genres in history. With the advent of algorithms



2

Fig. 1 Examples of visibility testing in the form of fog of war on complex 3D surfaces. Our algorithm uses synthetic vision
to do real-time visibility testing for hundreds of agents, allowing for an immersive and realistic gaming experience, even on
non-planar surfaces. This example shows results using the Stanford bunny, a highly-convex surface, a torus, and a fifteen-story
building all with our algorithm. More examples can be seen in Figure 8. (Stanford bunny data courtesy Stanford University
Computer Graphics Laboratory.)

for real-time path planning and crowd simulation on ar-

bitrary 3D surfaces, RTS and serious games are poised

to make a similar dramatic change. However, even with

new algorithms for moving crowds of people, troops, or

animals on complex surfaces, the move from 2D RTS

games to 3D ones will be impossible without visibility

testing. To remedy this, we propose a real-time method

for visibility testing for RTS-style games using synthetic

vision.

Our proposed synthetic vision algorithm for visibil-

ity testing is unique since it is designed for non-planar

surfaces. Unlike other slower like ray-casting, our GPU-

based implementation provides both a fast and accurate

method for determining visibility. As a result, it han-

dles visibility testing across a wide range of complex

3D surfaces in real-time (see Figure 1). By leveraging

the features of modern GPUs, our visibility testing can

work with up to 200 agents, creating a dramatic and

believable fog of war experience on arbitrary surfaces.

Although the focus of this work is on visibility testing

for fog of war, the visibility testing algorithm proposed

is capable of extension for a variety of other uses like

NPC activation and realistic artificial intelligence.

2 Previous Work

To set the context for visibility testing on arbitrary sur-

faces, we begin with the evolution of path planning and

obstacle avoidance algorithms from 2D to 3D followed

by specific algorithms for crowds on 3D surfaces like

those needed in a 3D RTS game. We then compare and

contrast previous synthetic vision algorithms.

2.1 Global Path Planning

Most 2D path planning algorithms have their roots in

graph-based path planners like Dijkstra’s or A*. These

algorithms run quickly, but if left unoptimized the re-

sulting paths are inherently jagged and unnatural. Some

algorithms moved to more accurate planners like fast

marching methods [28] while others straighten paths us-

ing line-of-sight smoothing [30]. As Geraert concludes,

even with an accurate path planner, agent motion is

most natural when it is a corridor, not just a line [7].

Such algorithms work very well for essentially 2D games,

but not for arbitrary 3D surfaces.

Early 3D path planning solutions came from Mitchell

et al. [20] and Chen and Han [3], both of which have

had countless extensions proposed in the intervening

years (with Bose et al. [2] writing an excellent survey).

Other unique approaches include Martinez et al. [19]

and Kanai and Suzuki [11] who find geodesics by start-

ing with an approximation and iteratively refining the

path. Other work breaks down the mesh into quasi-

developable regions and then finds paths [31]. A quite

powerful and fast discrete geodesic method was pro-

posed by Kimmel and Sethian [13] based on the fast

marching method. Lai and Cheng recently proposed an

unfolding method for finding discrete geodesics [15] on

subdivision surfaces. As we discuss later in Section 3, if

these 3D path planning algorithms are not optimized,

they unfortunately do not provide natural crowds for

RTS or similar serious games on arbitrary surfaces.

2.2 Local Obstacle Avoidance

Another key component of RTS games are local obsta-

cle avoidance techniques that keep agents from running

through each other or into walls. Most 2D local obsta-

cle avoidance techniques trace their roots to Reynolds’



Real-time Synthetic Vision Visibility Testing on Arbitrary Surfaces 3

work on flocking dynamics [26]. Helbing and Molnár

[10,9] extended this to social forces for human crowds

on a 2D plane. To address the jamming inherent in

spring-based methods, Fiorini and Shiller [5] proposed

velocity obstacles as a more realistic method, which

was further improved by van den Berg et al. [1] who

proposed reciprocal velocity obstacles (RVO) to remove

agent oscillations. Recently, Guy et al. [8] changed RVO

to optimize over agent effort, which accurately produces

global effects like agents walking faster near walls.

Other steering algorithms have been based on ob-

serving how human’s walk. For example, Lee et al. [17]

learned local obstacle avoidance behavior and group in-

teractions from video. Olivier et al. [23] evaluated how

people moved in response to a character shown on a

video screen which was used to build an anticipation

algorithm [24] based on optical flow. Other work has

focused on the speed of crowd simulation. For example,

Narain et al. [21] simulate tens of thousands of agents

at interactive rates in dense settings by combining both

Euclidean and Lagrangian methods. Karamouzas et al.

[12] achieve similar speed results with their collision

prediction model. Pelechano et al.’s HiDAC algorithm [25]

produces believable results in huge crowd situations.

Reynold’s work with the Play Station 3 can simulate

10,000 agents at 60 frames per second [27].

Like path planning algorithms, 2D obstacle avoid-

ance algorithms are mature, but need to be extended

to work on 3D surfaces if they are to be used in RTS

games on complex surfaces. Fortunately, some recent

work has begun to do 3D path planning and obstacle

avoidance for crowd simulation on arbitrary surfaces.

2.3 Crowds on Arbitrary Topologies

Building on 3D path planning and 2D obstacle avoid-

ance work, recent years have seen a rising interest in

crowd simulation on arbitrary topologies. As mentioned

in the introduction, crowd algorithms for arbitrary topolo-

gies would be able to model crowds on such relevant and

diverse surfaces as office buildings, subways, homes, and

stadiums. An effective 3D crowd simulation algorithm

could then be used as the backbone for RTS games on

arbitrary surfaces by providing realistic path planning

and movement controls.

Most algorithms that put crowds on arbitrary sur-

faces break down the scene into separate 2D pieces

that are connected at edges. Shao and Terzopoulos [29]

created a model of New York City’s original Pennsyl-

vania station where ”The representation assumes that

the walkable surface in a region may be mapped onto

a horizontal plane...thereby enhancing the simplicity

and efficiency of environmental queries.” More recently

Lamarche [16] proposed a method for character mo-

tion and animation with advanced features like duck-

ing under ceilings. However, like Shao and Terzopoulos,

the algorithm approximates the 3D surface with a 2D

plane. Other work breaks down surfaces into 2.5 di-

mensions [4], but the addition of a height map does

not capture the complexity of surfaces like multi-story

buildings. Since flattening cannot robustly handle ar-

bitrary surfaces, these algorithms are limited in their

ability to be the core of RTS games.

Other work that is not constrained to planar sur-

faces includes Fischer et al. [6] who propose a planning

algorithm for factories with ramps and stairs, but the

work’s focus on planning for automated factories means

it is not immediately applicable to our goal of RTS

games with a large number of agents. Levine et al.’s

work [18] provides an algorithm for character locomo-

tion through complex environments with dynamic ob-

stacles. Like Lamarche’s work, Levine’s work produces

good results, but it is not designed for the large agent

requirements of games.

A more successful and general approach to crowds

on 3D surfaces was done by Torchelsen et al. [32]. This

work uses a discrete geodesic method to move agents

across smooth meshes while doing local obstacle avoid-

ance on the GPU. Unfortunately, this algorithm only al-

lows a limited number of destinations for all the agents.

This makes it difficult for RTS games where the player

can assign arbitrary destinations to agents. To resolve

these issues, we have developed a new 3D crowd sim-

ulation algorithm that does not flatten surfaces, works

with hundreds of agents in real-time on high-polygon

count surfaces, and allows for surfaces with sharp turns

and corners. This is the engine we used for moving

agents in our RTS scenario, and we describe it in detail

in Section 3.

2.4 Previous Synthetic Vision Work

Synthetic vision has been a consistent theme in crowd

simulation for over a decade. Unlike most previous work,

we are not using synthetic vision for the path planning

or local obstacle avoidance parts of our work. Instead,

synthetic vision plays a key role in informing the user

about the state of the game. For example, [22] use syn-

thetic vision for global navigation via an oct tree and

local navigation.

Kuffner et al. [14] use synthetic vision to find and

update the positions of obstacles in their environment.

Each object has a unique identifier that is precomputed

and the synthetic view of each agent is colored based on

the id of the object present. The colors are processed



4

Fig. 2 Classic 2D crowd simulation framework (top) and our
proposed framework for 3D surfaces (bottom). This frame-
work provides the backbone to our RTS simulation.

to determine which objects can be seen where, and the

memory of the agent is updated accordingly.

3 3D Crowd Simulation Implementation

[cite myself]

The foundation of any RTS game is an engine for

agent path planning and obstacle avoidance. In order to

have groups of agents on arbitrary arbitrary surfaces,

we use our algorithm for 3D crowds simulation, which

we describe briefly in this section. (Note that when we

say 3D crowd simulation, we mean crowds constrained

to surfaces in 3D space, not flock with unconstrained

3D movement.) This 3D framework mirrors the tradi-

tional 2D crowd simulation framework shown in Fig-

ure 2 with a path planning piece and a local obstacle

avoidance piece followed by a movement piece. This al-

gorithm is flexible enough to allow for almost any 3D

path planning algorithm and 2D obstacle avoidance al-

gorithm, as long as the results are optimized for crowd

simulation. As we discuss in our results section, use of

this engine provides believable, real-time movement for

our RTS strategy agents.

3.1 Optimized 3D Path Planning

Our simulation engine optimizes 3D path planning al-

gorithms since unoptimized algorithms fail to naturally

move agents in real-time. Symptoms of unoptimized

path planning include paths that are jagged, agents

that get confused around corners, and agents that eas-

ily jam. For each of these problems we provide an op-

timization, as shown in Figure 3. The first problem,

jagged paths, comes since not all 3D path planners pro-

duce perfectly smooth paths. Needing a fast but slightly

inaccurate method would not be surprising given the

Fig. 3 The three optimizations in the path planning part of
our framework. A: A scenario with an agent (star) who needs
to go up the stairs. B: The initial 3D path provided by a
graph-based algorithm with an unnatural turn. C: The first
optimization smooths the path using a line of sight approx-
imation. D: The second optimization moves the path away
from the edge by analyzing triangle edges. E: The last op-
timization provides a corridor for the agent, thus reducing
jamming in the presence of other agents.

real-time demands of RTS games. Our first optimiza-

tion quickly straightens out agent movement even if a

path has unnatural turns. The next problem is that an

agent can get confused or stall near edges even with a

perfect path. For example, in a two-story building every

path running up or down the stairs overlaps on the in-

side of the stairway. This results in stalling as agents try

to follow a path right along an edge or wall. Our second

optimization analyzes the geometry of the 3D environ-

ment to push paths away from edges. The last problem

is that around corners and bottlenecks paths from mul-

tiple agents tend to lie on top of each other, leading to

congestion and jams. Our third optimization resolves

this by giving agents corridors, which gives them the

additional freedom they need to form lanes and pass

naturally.

Empirically, these three optimizations dramatically

decrease the amount of jamming and stalling in an en-

vironment with edges. In our tests, without the away

from edges optimization, almost a full fifth of the agents

stalled. With the away from edges optimization, the

percent dropped to less than one and a half percent,

Fig. 4 How our framework converts 3D offsets to 2D values.
The agent highlighted in blue responds to agents in front
of him, which are highlighted different colors. The colored
arrows correspond to the calculated 2D distance and angles
to the agent of the respective color and become the 2D values
used by the local obstacle avoidance algorithm.



Real-time Synthetic Vision Visibility Testing on Arbitrary Surfaces 5

Fig. 5 The flow of our visibility testing algorithm. The viewport of each agent is rendered using our false coloring shader.
The visibility texture is then calculated based on these viewports. The visibility texture is then used to render the surface and
determine which agents are visible.

but jamming was still noticeable. With all optimiza-

tions, the percentage dropped to one tenth of one per-

cent. Both visually and numerically the improvement

was dramatic. This meant that the player-controlled

characters and NPCs in our RTS game moved natu-

rally and quickly to their destinations.

3.2 Local Obstacle Avoidance

The second major piece of our framework required for

our RTS games does local obstacle avoidance. To do this

on arbitrary surfaces, our algorithm converts the loca-

tion and offsets of nearby obstacles around an agent

from their true 3D values to simplified 2D values (as

shown in Figure 4). The resulting 2D values are fed

into any of a number of traditional 2D obstacle avoid-

ance algorithms. The resulting 2D change in position

and heading are then optimized for the curvature of the

3D surface. Empirically, this leads to real-time crowd

movement even on surfaces with over 100,000 triangles.

All of the 3D path planning and obstacle avoidance

optimizations are done without flattening, so the result-

ing crowds move smoothly and without distortion even

around complicated parts of surfaces such as the corners

of stairs. For our RTS scenario, we used these optimiza-

tions on top of an A* weighted algorithm for 3D path

planning and RVO for our local obstacle avoidance al-

gorithm. The resulting crowds moved quickly towards

their destinations and had an almost zero percent col-

lision rate.

4 Visibility Testing Implementation

Using our crowd simulation as the engine for moving

both player-controlled and computer-controlled charac-

ters, we were able to do realistic visibility testing for

agents in real-time in an RTS scenario. In this section

we discuss our visibility testing algorithm in general,

and in the next section (Section 5) we discuss how we

used this testing to implement fog of war and other

features.

The goal of visibility testing is to determine what

player-controller agents can see and what they have

been able to see in the past. As previously discussed,

this allows for accurate fog of war, NPC activation, and

computer artificial intelligence. Some options for doing

visibility testing on 2D surfaces, like ray-casting, are

too slow in the 3D case since the number of ray casts

required for 3D surfaces is too large. Similarly, merely

assuming that agents can see everything within a dis-

tance threshold is unrealistic since it does not account

for self-occluding surfaces like ones with corners, turns,

and walls. To resolve these issue of speed and accuracy,

we propose a synthetic vision solution that is both fast

and accurate.

As an overview of our visibility testing algorithm,

see Figure 5. As shown on the left, we use a false col-

oring shader to color the surface when it is rendered

by the virtual camera’s place at the heads of player-

controlled agents. Shown in the middle are examples of

what individual agents may see as rendered to a tex-

ture. On the right is shown the resulting visibility map

that is generated on the GPU and can be used either

on the CPU or GPU for various needs like fog of war,

NPC activation, and artificial intelligence. In the next

three subsections we discuss each part of this process

in turn.

4.1 False Coloring

Synthetic vision allows us to calculate a realistic view of

what each agent sees in real-time. To do this we built a



6

Fig. 6 Three surfaces shaded with our false col-
oring scheme: a cube, the asteroid 216 Kleopa-
tra, and a 15-story building. Asteroid models cour-
tesy Scott Hudson, Washington State University,
http://users.tricity.wsu.edu/h̃udson/Research/Asteroids/models.html

shader that colors each pixel of the surface based on its

position in world space. Unlike Kuffner and Latombe [14]

and others, we do not label each piece of the surface and

render each piece with a unique color since this may re-

quire some manual intervention in terms of labeling and

since we do not want whole pieces of the surface to be-

come visible if just one corner can be seen. Instead, we

use a positional false coloring shader that colors each

part of the surface based solely on its position in space.

Our positional shader divides the surface bounding

box into a 16x16x16 grid and assigns each voxel in that

grid a unique color (see Figure 6). In the pixel shader

routine of our false coloring shader, the 3D world space

position of the current pixel is stored. This position is

converted into percentages in x, y, and z based on the

bounding volume that encompasses the surface. Thus,

if a pixel represents a part of our scene that is near the

bottom left back of our surface, the percentages will all
be near 0, and if a pixel is near the top right front of our

surface then the percentages will all be near 1. These

percentages are then converted into numbers between 0

and 15 inclusively, which give the voxel coordinates of

the pixel. This 3D coordinate is converted into 2D space

and a lookup is done in a reference texture, which stores

the color for that voxel. The pixel is then assigned that

color without consideration of lighting, etc.

4.2 Synthetic Vision Shader and Multiple Agents

Key to our algorithm is the synthetic vision piece that

renders the viewport of each agent to a texture which is

then interpreted by the visibility shader. To create syn-

thetic vision, on each frame a virtual camera was placed

above the player-controlled agent pointing slightly down.

The world was then rendered using our false coloring

shader onto a low resolution texture.

Visibility testing is most interesting and useful when

it combines the visibility of many agents working to-

gether as a team. For example, in a military RTS game,

certain units can be positioned to reveal areas of the

map so other units can fire long-range weapons. In a

serious game scenario, different units can be used to

search different parts of the map for a missing person

or a bomb. To reproduce this effect in our algorithm, we

allowed multiple user-controlled agents to contribute to

the visibility map.

To allow multiple contributing viewports, each player-

controlled agent renders its own view. Once all the view-

ports were rendered, the visibility map shader looped

over each viewport looking for visible voxels. This was

done in a cumulative way so that if a voxel was visible

in any viewport, it would be flagged as visible in the

final visibility map.

4.3 Visibility Map

In the next step of our synthetic vision algorithm, a vis-

ibility texture is generated, which stores which voxels

are visible to any agent. In the simple case, voxels which

have been seen at any time are colored white while the

rest are colored black. At the beginning of the program

the visibility map is initialized to all black. On each

frame the visibility shader loops over each agent’s view-

port. Since each pixel in the visibility map represents

a voxel in space, the shader first determines the color

that would be present if any of the agents can see that

voxel. The shader then samples the viewports looking

for that color. If the color is found (or was seen in a

previous frame), the current pixel is colored white. If

not it remains black.

This process creates a very realistic visibility map in

real-time. To determine if a part of the surface is visible,

the GPU or CPU only needs to consult this visibility

map texture and check for black and white pixels. Note

also that this process does not depend on the tessella-

tion of the surface, nor are parts of the surface man-

ually colored or numbered as in other synthetic vision

approaches. Additionally, this algorithm accurately cal-

culates visibility even on self-occluding surfaces, such as

around corners and walls in a building.

5 Fog of War Implementation

As a direct application of our visibility testing, we used

the visibility map to draw fog of war on our surfaces

and to determine the visibility of NPCs in our RTS

scenario.



Real-time Synthetic Vision Visibility Testing on Arbitrary Surfaces 7

Fig. 7 Process for soft fog of war shadows. We begin by rendering the scene without any fog. We then render the surface
again with our fog of war shader. We blur the fog of war horizontally and vertically, using the original surface render as our
clipping bounds. The surface, the soft fog of war, and the background are then combined for the final image.

5.1 Fog of War Shader

The final shader in our synthetic vision algorithm shades

the surface using a fog of war algorithm. We were faced

with two options in this process: rewrite all the surface

shaders we already had and change them to consult the

visibility texture or find a way to draw the surface twice,

once with our unchanged previous surface shaders and

once with a new shader. The former idea would be te-

dious and would not result in a flexible algorithm. In-

stead, we followed the latter course and developed a

final shader for changing the appearance of the surface

based on the visibility map.

The fog of war shader takes the surface geometry

and the visibility texture and colors the playing sur-

face black if that area is in a black voxel and draws a
transparent pixel if the voxel is white. The black pixels

obscure the underlying surface where the fog of war is,

and the transparent pixels allow the surface to show

through where the surface is revealed. To prevent z-

buffer fighting, the fog of war is drawn with a small z

bias that brings it slightly closer to the viewing plane.

5.2 Softening the Fog of War

This fog of war process is accurate, but the results look

unnatural since it has sharp edges where the fog of war

starts and ends. To enhance the idea that the fog of war

is fuzzy, we provide a series of shaders that soften the

fog of war much like shadows are softened by rendering

the surface and the fog of war separately (see Figure 7).

First, the scene is rendered using the normal shader. In

a separate buffer the visibility map is used to render

the fog of war. Next, the fog of war is blurred both

horizontally and vertically. To make sure the fog does

not get softened outside the boundaries of the surface,

pixels are not blurred if they are background pixels.

Finally, the background is rendered to its own buffer

and the surface, the fog of war, and the background are

all composed.

Notice that when a similar approach is used for soft-

ened shadows in video games, the shadow often strug-

gles with bleeding as the shadow is blurred onto fore-

ground objects. In the context of fog of war, this often

is a feature, not a problem. With our blurring shaders,

NPC characters that are on the edge of the fog of war

are partially obscured by the blur. This is exactly the

effect we want since it gives a clear visual cue that these

agents are on the boundary of the known and unknown.

5.3 Other Fog of War Types

The fog of war described so far is simplistic in the

sense that once a part of the surface has been revealed,

it stays revealed permanently. The approach taken in

more modern RTS games like StarCraft II is to have

areas of the surface that have not been visible for a

long time slowly fade out and return to being fully ob-

scure. Dealing with this means changing the visibility

map from a binary texture to a gray-scale texture. In

the gray-scale case black means an area has never been

seen, shades of gray means the area has been seen but

cannot be seen now, and white means the area is visible

on this frame. To calculate gray-scale values, the visi-

bility map from the previous frame is darkened slightly

unless a voxel is currently visible, in which case it is

colored white. In this way, areas that are not seen for

a long time slowly return to a black color. In our fog of

war implementation, we either treat dark gray voxels



8

Fig. 8 Examples of our fog of war using our visibility map as a base. These include astronauts inside a space station, agents
on a cube, shoppers in a two-story mall, and astronauts on the asteroid Kleopatra. More examples can be seen in Figure 1.

as totally obscure or slowly fade in the fog of war on

voxels that are gray scale.

We are also able to easily alter other aspects of the

fog of war. For example, in some RTS games the fog

of war is totally black and thus obscures the under-

lying terrain. In other games the fog of war obscures

NCPs, but shows the layout of the underlying terrain.

We mimic both of these features by tweaking the alpha

value of our fog of war: for total obscurity the fog of

war has an alpha of 0, for partial terrain visibility the

alpha is set to .2. We further emphasized which parts of

the surface are obscured by the fog of war by coloring

obscured parts of the surface in gray scale.

5.4 Other Features

In addition to revealing visible terrain, our algorithm

also uses our visibility testing to determine which NPC

characters are visible at a given frame. Unlike our fog

of war, this process was done on the CPU, showing our

algorithm’s flexibility in terms of both CPU and GPU

use.

In order to mimic modern RTS games, we added

two features for hiding and revealing NPC characters:

NPC characters should only be visible if they are within

the revealed part of the map and NPC characters on

the very border of the fog of war should be partially

shaded. To accomplish this first goal, on every frame

we query the GPU for the texture data of the visibil-

ity map. When each NPC character is drawn, the CPU

code finds the NPC’s voxel and then finds the color on

the visibility map corresponding to that location. If the

color is black or gray, the NPC is not drawn. If it is

white, the NPC is in a revealed part of the map and

it is drawn. As mentioned earlier, the second feature—

shading agents on the edge of the fog of war—comes for

free since we draw the fog of war after NPCs are drawn.

If the NPC is on the edge, it is partially obscured, cre-

ating a very believable effect as they walk in and out of

the revealed area.

6 Results

To validate our synthetic vision algorithm for visibil-

ity testing on arbitrary surfaces, we used it on a suite

of surfaces using varying numbers of agents. Some of

our results were qualitative, as shown in Figures 1 and

8. These figures show that our fog of war results were

accurate, believable, and that NPC agents could only

be seen where the map was revealed. The results are

even more impressive in a time series as the fog of

war gradually dissipates around the player-controlled

agents. Another key result is that our algorithm deter-

mines visibility using the GPU, but the results can be

read in real-time by the CPU. In our algorithm this is

seen in the fact that the CPU determines which NPCs

are visible based on a GPU calculated texture. This

means that an RTS game built on our algorithm does

not need to move all computation to the GPU. Ad-

ditionally, our qualitative results include the fact that

our algorithm for crowds on arbitrary surfaces works

naturally as the engine for a RTS scenario with believ-

able movement and with practically no jamming. We

believe this further validates our 3D path planning and

2D local obstacle avoidance optimizations.

For a more quantitative analysis, we ran our algo-

rithm on a benchmark of surfaces to determine the run-

time of our visibility testing algorithm. Figure 9 shows

a sampling of the most indicative results. For lower

triangle-count surfaces, like the asteroid 216 Kleopa-

tra with a little over 2,000 triangles, we could run our

synthetic vision algorithm at 24 frames per second with

up to 200 hundred agents. Moving to a higher-polygon

count surface like our cube with 19,000 triangles, the

run time stayed real-time up to about 150 agents. The

Stanford bunny (with over 69,000 triangles) ran near

real-time up to 100 agents. Some of our most interest-

ing surfaces (like the 15-story building in Figure 1) had

less than a thousand polygons, so even though it was a

very large and intriguing playing field, it achieved high

frames even with hundreds of agents.



Real-time Synthetic Vision Visibility Testing on Arbitrary Surfaces 9

Fig. 9 Graph of our synthetic vision’s performance based
on the number of agents doing synthetic vision in real-time.
Notice that even on high-triangle count surfaces, run-times
were at or near real-time with at least a hundred agents.

Fig. 10 Pie chart of where computation time was spent using
our synthetic vision algorithm on the Stanford bunny with
100 agents. Notice that the synthetic vision piece only re-
quired a little more than a quarter of the computation time.

We also profiled our results to see where the compu-

tation time of our algorithm is spent. The pie chart in

Figure 10 shows profiling results from running our visi-

bility testing algorithm on the Stanford bunny with 100

agents contributing to visibility. Notice that only a little

more than a quarter of our run-time was dedicated to

the synthetic vision algorithm. This meant that almost

75 percent of the time was left over for other computa-

tion like path planning and obstacle avoidance.

All tests were run on our quad-core, 2.33GHz pro-

cessor with one ATI Radeon HD 4600 series graphics

card. All CPU code was written in managed C# and

our shaders were written in HLSL. Our synthetic vi-

sion viewports were 16x16 and visibility map was 64x64.

This meant that we did not come close to using all the

available memory on our GPU.

From these results we conclude that synthetic vi-

sion provides a fast and realistic method for visibility

testing on complex surfaces for RTS games. When used

to create fog of war, the results are very believable and

can be rendered in real-time.

7 Conclusion and Future Work

We have presented a real-time algorithm for visibility

testing on arbitrarily complex 3D surfaces. This tech-

nology has the potential to compliment existing 3D

crowd simulation algorithms in the creation of RTS and

serious games on complex surfaces by allowing fog of

war, NPC activation, and line-of-sight based artificial

intelligence. Our synthetic vision approach leverages

the GPU and could have up to 200 agents contribut-

ing to the visibility map in real-time.

There are a variety of ways to speed up our synthetic

vision algorithm even further. One approach would be

to poll agents every few frames for visibility testing in-

stead of checking each agent on ever frame. Similarly,

the full visibility texture could be updated periodically

instead of every frame.

Our future work is focused on additional technolo-

gies that would aid in the creation of 3D RTS games in-

cluding intelligent camera movement. In most 2D games

the camera moves by panning across a flat plane. With

the addition of the 3D dimension to the playing sur-

face simply panning is not sufficient. We are interested

in intuitive and easy camera controls that allow the

player to move around complex surfaces rapidly. Simi-

larly, many RTS games are augmented with a mini-map

that shows a small 2D view of the entire surface. Since

most 3D surfaces cannot be flattened without distor-

tion, we are also investigating mini-map technologies

for complex surfaces.

References

1. van den Berg, J., Lin, M., Manocha, D.: Reciprocal
velocity obstacles for real-time multi-agent navigation.
Robotics and Automation pp. 1928–1935 (2008)

2. Bose, P., Maheshwari, A., Shu, C., Wuhrer, S.: A survey
of geodesic paths on 3d surfaces. Computational Geom-
etry 44(9), 486–498 (2011)

3. Chen, J., Han, Y.: Shortest paths on a polyhedron. Com-
putational Geometry pp. 360–369 (1990)

4. Cupec, R., Aleksi, I., Schmidt, G.: Step sequence plan-
ning for a biped robot by means of a cylindrical shape
model and a high-resolution 2.5 d map. Robotics and
Autonomous Systems (2010)

5. Fiorini, P., Shiller, Z.: Motion planning in dynamic en-
vironments using velocity obstacles. The International
Journal of Robotics Research 17(7), 760 (1998)



10

6. Fischer, M., Renken, H., Laroque, C., Dangelmaier,
W., Schaumann, G.: Automated 3d-motion planning for
ramps and stairs in intra-logistics material flow simu-
lations. Winter Simulation Conference pp. 1648 –1660
(2010)

7. Geraerts, R., Overmars, M.: The corridor map method:
Real-time high-quality path planning. Robotics and Au-
tomation pp. 1023–1028 (2007)

8. Guy, S., Chhugani, J., Curtis, S., Dubey, P., Lin, M.,
Manocha, D.: Pledestrians: A least-effort approach to
crowd simulation. ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation pp. 119–128 (2010)

9. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical
features of escape panic. Nature 407, 487–490 (2000)

10. Helbing, D., Molnár, P.: Social force model for pedestrian
dynamics. Physical Review E 51(5), 4282–4286 (1995)

11. Kanai, T., Suzuki, H.: Approximate shortest path on a
polyhedral surface and its applications. Computer-Aided
Design 33(11), 801–811 (2001)

12. Karamouzas, I., Heil, P., van Beek, P., Overmars, M.: A
predictive collision avoidance model for pedestrian simu-
lation. Motion in Games pp. 41–52 (2009)

13. Kimmel, R., Sethian, J.: Computing geodesic paths on
manifolds. National Academy of Sciences of the United
States of America 95(15), 8431 (1998)

14. Kuffner, J., Latombe, J.: Fast synthetic vision, memory,
and learning models for virtual humans. Computer Ani-
mation pp. 118–127 (1999)

15. Lai, S., Cheng, F.: Approximate geodesics on smooth
surfaces of arbitrary topology. Computer-Aided Design
(2011)

16. Lamarche, F.: Topoplan: a topological path planner for
real time human navigation under floor and ceiling con-
straints. Computer Graphics Forum 28, 649–658 (2009)

17. Lee, K., Choi, M., Hong, Q., Lee, J.: Group behavior from
video: a data-driven approach to crowd simulation. ACM
SIGGRAPH/Eurographics symposium on Computer an-
imation pp. 109–118 (2007)

18. Levine, S., Lee, Y., Koltun, V., Popović, Z.: Space-
time planning with parameterized locomotion controllers.
ACM Transactions on Graphics 30(3), 23 (2011)

19. Mart́ınez, D., Velho, L., Carvalho, P.: Computing
geodesics on triangular meshes. Computers & Graphics
29(5), 667–675 (2005)

20. Mitchell, J., Mount, D., Papadimitriou, C.: The discrete
geodesic problem. SIAM Journal on Computing 16, 647
(1987)

21. Narain, R., Golas, A., Curtis, S., Lin, M.: Aggregate dy-
namics for dense crowd simulation. ACM Transactions
on Graphics 28(5), 1–8 (2009)

22. Noser, H., Renault, O., Thalmann, D., Thalmann, N.:
Navigation for digital actors based on synthetic vision,
memory, and learning. Computers & graphics 19(1), 7–
19 (1995)

23. Olivier, A., Ondřej, J., Pettré, J., Kulpa, R., Crétual, A.:
Interaction between real and virtual humans during walk-
ing: perceptual evluation of a simple device. Applied Per-
ception in Graphics and Visualization pp. 117–124 (2010)

24. Ondřej, J., Pettré, J., Olivier, A., Donikian, S.: A
synthetic-vision based steering approach for crowd simu-
lation. ACM Transactions on Graphics 29(4), 1–9 (2010)

25. Pelechano, N., Allbeck, J., Badler, N.: Controlling indi-
vidual agents in high-density crowd simulation. ACM
SIGGRAPH/Eurographics symposium on Computer an-
imation pp. 99–108 (2007)

26. Reynolds, C.: Flocks, herds and schools: A distributed
behavioral model. Computer Graphics and Interactive
Techniques pp. 25–34 (1987)

27. Reynolds, C.: Big fast crowds on ps3. ACM SIGGRAPH
symposium on Videogames pp. 113–121 (2006)

28. Sethian, J.: Level set methods and fast marching meth-
ods. Cambridge University Press (2003)

29. Shao, W., Terzopoulos, D.: Autonomous pedestrians.
ACM SIGGRAPH/Eurographics symposium on Com-
puter animation pp. 19–28 (2005)

30. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steer-
bench: a benchmark suite for evaluating steering behav-
iors. Computer Animation and Virtual Worlds 20(5-6),
533–548 (2009)

31. Torchelsen, R., Pinto, F., Bastos, R., Comba, J.: Ap-
proximate on-surface distance computation using quasi-
developable charts. Computer Graphics Forum 28, 1781–
1789 (2009)

32. Torchelsen, R., Scheidegger, L., Oliveira, G., Bastos, R.,
Comba, J.: Real-time multi-agent path planning on arbi-
trary surfaces. ACM SIGGRAPH symposium on Inter-
active 3D Graphics and Games pp. 47–54 (2010)


